Saturday 23 September 2017

Moving Average Time Serie R


Time Series und Forecasting. R verfügt über umfangreiche Möglichkeiten zur Analyse von Zeitreihendaten Dieser Abschnitt beschreibt die Erstellung einer Zeitreihe, saisonale Zerlegung, Modellierung mit exponentiellen und ARIMA-Modellen und Prognose mit dem Prognosepaket Umwandlung eines numerischen Vektors in ein R-Zeitreihenobjekt Das Format ist ts Vektor, Anfang, Ende, Häufigkeit, wo Anfang und Ende die Zeiten der ersten und letzten Beobachtung und Häufigkeit sind die Anzahl der Beobachtungen pro Zeiteinheit 1 jährlich, 4 Quartal, 12 monatlich, etc. speichern Sie einen numerischen Vektor mit 72 monatlichen Beobachtungen von Jan 2009 bis Dez 2014 als Zeitreihenobjekt myts - ts myvector, start c 2009, 1, end c 2014, 12, Frequenz 12 unterstreichen die Zeitreihe Juni 2014 an Dezember 2014 myts2 - fenster myts, start c 2014, 6, end c 2014, 12 plot serie plot myts. Seasonal Zerlegung. Eine Zeitreihe mit additiven Tendenz, saisonalen und unregelmäßigen Komponenten kann mit der stl Funktion zerlegt werden Multiplikative Effekte können oft durch Additivwirkungen durch eine Logtransformation, also Newts - Log Myts, in Serie umgesetzt werden. Saisonale Zersetzung fit - stl myts, plot passen zusätzliche plots monthplot myts bibliothek prognose seasonplot myts. Exponential models. Both die HoltWinters Funktion in der Basisinstallation und die ets Funktion in der Prognose Paket kann verwendet werden, um exponentielle Modelle passen. Einfache Exponential - Modelle Level Fit - HoltWinters Mythen, Beta FALSE, Gamma FALSE Double Exponential - Modelle Level und Trend Fit - HoltWinters Myts, Gamma FALSE Triple Exponential - Modelle Level, Trend und saisonale Komponenten fit - HoltWinters myts Vorhersage Genauigkeitsbibliothek Prognose Genauigkeit fit Vorhersage der nächsten drei zukünftigen Werte Bibliothek Prognose Prognose fit, 3 Plot Prognose fit, 3.ARIMA Modelle. Die Arima-Funktion kann verwendet werden, um eine autoregressive integrierte gleitende Durchschnitte Modell passen Andere nützliche Funktionen gehören. aufgedruckte Version der Zeitreihen, verschoben zurück k Beobachtungen. Mav c 4,5,4,6, 3 Zeitreihe Anfang 1 Ende 4 Häufigkeit 1 1 NA 4 333333 5 000000 NA. Hier habe ich versucht, einen rollenden Durchschnitt zu machen, der die letzten 3 Zahlen berücksichtigt hat, also habe ich erwartet, dass ich gerade komme Zwei Nummern zurück 4 333333 und 5 und wenn es NA-Werte geben würde, dachte ich, dass sie am Anfang der Sequenz sind. In der Tat stellt sich heraus, dass das ist, was die Seitenparameter steuert. Seiten für Faltungsfilter nur Wenn Seiten 1 die Filterkoeffizienten sind für vergangene Werte nur dann, wenn die Seiten 2 um die Verzögerung 0 zentriert sind. In diesem Fall sollte die Länge des Filters ungerade sein, aber wenn es sogar ist, ist mehr der Filter vorwärts in der Zeit als rückwärts. So in unserer mav-Funktion Der rollende Durchschnitt sieht beide Seiten des aktuellen Wertes anstatt nur bei vergangenen Werten. Wir können das anpassen, um das Verhalten zu bekommen, das wir wollen. Bibliothek zoo rollmean c 4,5,4,6, 3 1 4 333333 5 000000.Ich habe auch realisiert Kann alle Funktionen in einem Paket mit der ls-Funktion auflisten, also werde ich scannen Zoo s Liste der Funktionen beim nächsten Mal muss ich etwas Zeitreihe verwandeln, die es wahrscheinlich schon eine Funktion für it. ls Paket Zoo 1 4 7 10 13 16 coredata coredata - 19 facetfree 22 frequenz - index 25 index - index2char 28 MATCH 31 34 37 40 43 46 49 ORDER 52 55 58 61 64 67 70 73 76 79 82 rollen rolrolllyr rollmax 85 rollmaxr rollmean 88 rollmeanr rollmedian 91 rollmedianr rollsum 94 rollsumr scalexyearmon 97 scalexyearqtr scaleyyearmon scaleyyearqtr 100 time - 103 xblocks 106 yearmon yearmontrans 109 yearqtr yearqtrtrans zoo 112 zooreg. Be Gesellig, Share.2 1 Moving Average Models MA Modelle. Time Serie Modelle bekannt als ARIMA Modelle können autoregressive Begriffe und gleitende durchschnittliche Begriffe In Woche 1, lernten wir einen autoregressiven Begriff in einem Zeitreihenmodell für die Variable xt ist ein verzögerter Wert von xt Zum Beispiel ist ein lag 1 autoregressiver Term x t-1 multipliziert mit einem Koeffizienten Diese Lektion definiert gleitende durchschnittliche Terme In einem Zeitreihenmodell ist ein vergangener Fehler multipliziert mit einem Koeffizienten. Let wt Overset N 0, Sigma 2w, was bedeutet, dass die wt identisch, unabhängig verteilt sind, jeweils mit einer Normalverteilung mit Mittelwert 0 und der gleichen Varianz. 1. Ordnung Gleitendes Durchschnittsmodell, das mit MA 1 bezeichnet wird. Xt mu wt theta1w. Das 2. geordnete gleitende Durchschnittsmodell, das mit MA 2 bezeichnet wird, ist. Xt mu wt theta1w theta2w. Das gängige gleitende durchschnittliche Modell, das mit MA q bezeichnet wird, ist. Xt mu wt theta1w theta2w punkte thetaq. Note Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und nicht quittierten Begriffe in Formeln für ACFs und Abweichungen Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Zeichen verwendet wurden, um das geschätzte Modell R korrekt zu schreiben. R verwendet positive Zeichen in seinem zugrunde liegenden Modell, wie wir hier sind. Die theoretischen Eigenschaften einer Zeitreihe mit Ein MA 1 Modell. Hinweis, dass der einzige Wert ungleich Null in der theoretischen ACF ist für lag 1 Alle anderen Autokorrelationen sind 0 Also ein Beispiel ACF mit einer signifikanten Autokorrelation nur bei lag 1 ist ein Indikator für eine mögliche MA 1 Modell. Für interessierte Studenten, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handzettel. Beispiel 1 Angenommen, dass ein MA 1 - Modell xt 10 wt 7 w t-1 ist, wobei wt Overset N 0,1 Somit ist der Koeffizient 1 0 7 Die theoretische ACF ist gegeben durch Von diesem ACF folgt. Die Plot, die gerade gezeigt wird, ist die theoretische ACF für eine MA 1 mit 1 0 7 In der Praxis, ein Beispiel gewonnen t in der Regel ein solches klares Muster Mit R, simulierten wir n 100 Probenwerte mit dem Modell xt 10 wt 7 W t-1 wo w t. iid N 0,1 Für diese Simulation folgt ein Zeitreihenplot der Stichprobendaten Wir können aus dieser Handlung viel erzählen. Die Stichprobe ACF für die simulierten Daten folgt Wir sehen eine Spike bei Verzögerung 1 Gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Beachten Sie, dass die Stichprobe ACF nicht mit dem theoretischen Muster der zugrunde liegenden MA 1 übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sind. Eine andere Probe hätte eine etwas andere Probe ACF Unten gezeigt, aber wahrscheinlich die gleichen breiten Features haben. Theroretische Eigenschaften einer Zeitreihe mit einem MA 2 Modell. Für das MA 2 Modell sind die theoretischen Eigenschaften die folgenden. Hinweis, dass die einzigen Werte ungleich Null in der theoretischen ACF sind für Lags 1 Und 2 Autokorrelationen für höhere Verzögerungen sind 0 Also, ein Beispiel ACF mit signifikanten Autokorrelationen bei Verzögerungen 1 und 2, aber nicht signifikante Autokorrelationen für höhere Verzögerungen zeigt ein mögliches MA 2 - Modell an. N 0,1 Die Koeffizienten sind 1 0 5 und 2 0 3 Da es sich hierbei um einen MA 2 handelt, wird der theoretische ACF nur ungleich Null-Werte nur bei den Verzögerungen 1 und 2 haben. Die Werte der beiden Nicht-Null-Autokorrelationen sind. Ein Diagramm der theoretischen ACF folgt. Wenn fast immer der Fall ist, wurden die Beispieldaten gewonnen Verhalten sich ganz so perfekt wie die Theorie Wir simulierten n 150 Sample-Werte für das Modell xt 10 wt 5 w t-1 3 w t-2 wobei w t. iid N 0,1 Die Zeitreihen-Plot der Daten folgt Wie bei den Zeitreihen Plot für die MA 1 Beispieldaten, können Sie t viel davon erzählen. Das Beispiel ACF für die simulierten Daten folgt Das Muster ist typisch für Situationen, in denen ein MA 2 Modell nützlich sein kann Es gibt zwei statistisch signifikante Spikes bei den Verzögerungen 1 und 2 gefolgt Durch nicht signifikante Werte für andere Lags Beachten Sie, dass aufgrund des Stichprobenfehlers die Stichprobe ACF nicht mit dem theoretischen Muster genau übereinstimmte. ACF für General MA q Modelle. Eigenschaft von MA q-Modelle im Allgemeinen ist, dass es keine Null-Autokorrelationen für die erste gibt Q Verzögerungen und Autokorrelationen 0 für alle Verzögerungen q. Non-Eindeutigkeit der Verbindung zwischen Werten von 1 und Rho1 in MA 1 Modell. Im MA 1 Modell gibt für jeden Wert von 1 der reziproke 1 1 den gleichen Wert für ein Beispiel , Benutze 0 5 für 1 und verwende dann 1 0 5 2 für 1 Du bekommst in beiden Fällen rho1 0 4. Um eine theoretische Einschränkung zu erfüllen, die Invertierbarkeit genannt wird, beschränken wir MA 1 - Modelle, Werte mit einem absoluten Wert kleiner als 1 zu haben Gegeben, 1 0 5 wird ein zulässiger Parameterwert sein, wohingegen 1 1 0 5 2 nicht. Unterstützung von MA Modellen ist. Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einer konvergierenden unendlichen Ordnung ist AR-Modell Durch konvergierende, wir Dass die AR-Koeffizienten auf 0 abnehmen, wenn wir uns in der Zeit zurückziehen. Unverträglichkeit ist eine Einschränkung, die in die Zeitreihen-Software programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Terminen abzuschätzen. Es ist nicht etwas, das wir in der Datenanalyse überprüfen. Weitere Informationen über die Invertierbarkeitsbeschränkung für MA 1 Modelle ist im Anhang angegeben. Advanced Theory Note Für ein MA q Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell Die notwendige Bedingung für die Invertierbarkeit ist, dass die Koeffizienten Werte haben, so dass die Gleichung 1- 1 y - - qyq 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R Code für die Beispiele In Beispiel 1 haben wir die theoretische ACF des Modells xt 10 wt 7w t-1 aufgetragen und dann n 150 Werte aus diesem Modell simuliert und Aufgetragen die Sample-Zeitreihen und die Probe ACF für die simulierten Daten Die R-Befehle, die verwendet wurden, um das theoretische ACF zu zeichnen, waren. acfma1 ARMAacf ma c 0 7, 10 Verzögerungen von ACF für MA 1 mit theta1 0 7 Verzögerungen 0 10 erzeugt eine Variable namens Lags Das von 0 bis 10 Plot-Verzögerungen reicht, acfma1, xlim c 1,10, ylab r, Typ h, Haupt-ACF für MA 1 mit theta1 0 7 abline h 0 fügt eine horizontale Achse zum Plot hinzu. Der erste Befehl bestimmt die ACF und Speichert es in einem Objekt namens acfma1 unsere Wahl des Namens. Die Plot-Befehl der 3. Befehl Plots Lags gegenüber den ACF-Werte für Lags 1 bis 10 Die ylab Parameter markiert die y-Achse und der Haupt-Parameter setzt einen Titel auf dem Plot. To sehen Die numerischen Werte des ACF verwenden einfach den Befehl acfma1. Die Simulation und Plots wurden mit den folgenden Befehlen durchgeführt. List ma c 0 7 Simuliert n 150 Werte aus MA 1 x xc 10 fügt 10 hinzu, um Mittel zu machen 10 Simulationsvorgaben bedeuten 0 Plot x, Typ b, Haupt Simuliert MA 1 Daten acf x, xlim c 1,10, Haupt-ACF für simuliert Beispieldaten In Beispiel 2 haben wir die theoretische ACF des Modells xt 10 wt 5 w t-1 3 w t-2 aufgetragen und dann n 150 Werte aus diesem Modell simuliert und die Sample-Zeitreihen und die Probe ACF für die simulierten aufgetragen Daten Die verwendeten R-Befehle waren. acfma2 ARMAacf ma c 0 5,0 3, acfma2-Verzögerungen 0 10 Plot-Verzögerungen, acfma2, xlim c 1,10, ylab r, Typ h, Haupt-ACF für MA 2 mit theta1 0 5, theta2 0 3 abline h 0 list ma c 0 5, 0 3 x xc 10 plot x, Typ b, main Simuliert MA 2 Serie acf x, xlim c 1,10, Haupt-ACF für simulierte MA 2 Daten. Appendix Nachweis der Eigenschaften von MA 1 Für interessierte Schüler sind hier Beweise für die theoretischen Eigenschaften des MA 1 Modells. Variante Text xt Text mu wt theta1 w 0 text wt text theta1w sigma 2w theta 21 sigma 2w 1 theta 21 sigma 2w. Wenn h 1, der vorherige ausdruck 1 W 2 Für jeden h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass durch die Definition der Unabhängigkeit des wt E wkwj 0 für jedes kj weiter, weil das wt den Mittelwert 0 hat, E wjwj E wj 2 w 2.Für eine Zeitreihe. Geben Sie dieses Ergebnis, um das oben angegebene ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als ein unendliches Ordnungs-AR-Modell geschrieben werden kann, das so konvergiert, dass die AR-Koeffizienten zu 0 konvergieren, wenn wir uns unendlich zurück bewegen. Wir zeigen die Invertierbarkeit für die MA 1 Modell. Wir ersetzen dann die Beziehung 2 für w t-1 in Gleichung 1. 3 zt wt theta1 z - theta1w wt theta1z - theta 2w. Die Zeit t-2 Gleichung 2 wird. Wir ersetzen dann die Beziehung 4 für w t-2 In Gleichung 3. Zt wt theta1 z - Theta 21w wt theta1z - theta 21 z - theta1w wt theta1z - theta1 2z theta 31.Wenn wir unendlich weitergehen würden, würden wir das unendliche AR-Modell bekommen. Zt wt theta1 z - theta 21z theta 31z - theta 41z dots. Hinweis jedoch, dass wenn 1 1 die Koeffizienten, die die Verzögerungen von z multiplizieren, unendlich an Größe zunehmen werden, wenn wir uns in der Zeit zurückziehen Um dies zu verhindern, brauchen wir 1 1 Dies ist Die Bedingung für ein invertierbares MA 1 Modell. Unendliche Ordnung MA Modell. In Woche 3 sehen wir, dass ein AR 1 Modell in ein unendliches Auftrag MA Modell umgewandelt werden kann. Xt - mu wt phi1w phi 21w punkte phi k1 w punkte sum phi j1w. Diese Summierung der vergangenen weißen Rauschbegriffe ist als die kausale Darstellung eines AR 1 bekannt. Mit anderen Worten, xt ist ein spezieller Typ von MA mit unendlich vielen Terme Rückkehr in der Zeit Dies ist eine unendliche Ordnung MA oder MA Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Recall in Woche 1, stellten wir fest, dass eine Voraussetzung für eine stationäre AR 1 ist, dass 1 1 Sei s berechnen die Var xt mit der Kausaldarstellung. Dieser letzte Schritt verwendet eine grundlegende Tatsache über geometrische Serien, die phi1 erfordert 1 sonst die Serie divergiert.

No comments:

Post a Comment